Modern Data Analytics in Excel: Using Power Query, Power Pivot, and More for Enhanced Data Analytics / Современная аналитика данных в Excel: Использование Power Query, Power Pivot и многого другого для расширенного анализа данных Год издания: 2024 Автор: Mount George / Маунт Джордж Издательство: O’Reilly Media, Inc. ISBN: 978-1-098-14882-9 Язык: Английский Формат: PDF/EPUB Качество: Издательский макет или текст (eBook) Интерактивное оглавление: Да Количество страниц: 244 Описание: If you haven't modernized your data cleaning and reporting processes in Microsoft Excel, you're missing out on big productivity gains. And if you're looking to conduct rigorous data analysis, more can be done in Excel than you think. This practical book serves as an introduction to the modern Excel suite of features along with other powerful tools for analytics. George Mount of Stringfest Analytics shows business analysts, data analysts, and business intelligence specialists how to make bigger gains right from your spreadsheets by using Excel's latest features. You'll learn how to build repeatable data cleaning workflows with Power Query, and design relational data models straight from your workbook with Power Pivot. You'll also explore other exciting new features for analytics, such as dynamic array functions, AI-powered insights, and Python integration. Learn how to build reports and analyses that were previously difficult or impossible to do in Excel. This book shows you how to: Build repeatable data cleaning processes for Excel with Power Query Create relational data models and analysis measures with Power Pivot Pull data quickly with dynamic arrays Use AI to uncover patterns and trends from inside Excel Integrate Python functionality with Excel for automated analysis and reporting Если вы не модернизировали процессы очистки данных и составления отчетов в Microsoft Excel, вы упускаете значительный прирост производительности. А если вы хотите провести тщательный анализ данных, то в Excel можно сделать больше, чем вы думаете. Эта практическая книга служит введением в современный набор функций Excel, а также в другие мощные инструменты для аналитики. Джордж Маунт (George Mount) из Stringfest Analytics показывает бизнес-аналитикам, специалистам по анализу данных и бизнес-аналитической аналитике, как получать больше прибыли прямо из ваших электронных таблиц, используя новейшие функции Excel. Вы узнаете, как создавать повторяемые рабочие процессы очистки данных с помощью Power Query и разрабатывать реляционные модели данных прямо из вашей рабочей книги с помощью Power Pivot. Вы также познакомитесь с другими интересными новыми функциями для аналитики, такими как функции динамических массивов, аналитическая информация на основе искусственного интеллекта и интеграция с Python. Узнайте, как создавать отчеты и аналитические материалы, которые ранее было сложно или невозможно выполнить в Excel. В этой книге показано, как: Создавать повторяемые процессы очистки данных в Excel с помощью Power Query Создавать реляционные модели данных и аналитические показатели с помощью Power Pivot Быстро извлекать данные с помощью динамических массивов Используйте искусственный интеллект для выявления закономерностей и тенденций внутри Excel Интегрируйте функциональность Python с Excel для автоматизированного анализа и составления отчетов
Примеры страниц (скриншоты)
Оглавление
Preface ix Part I. Data Cleaning and Transformation with Power Query 1. Tables: The Portal to Modern Excel 3 Creating and Referring to Table Headers 3 Viewing the Table Footers 6 Naming Excel Tables 8 Formatting Excel Tables 9 Updating Table Ranges 9 Organizing Data for Analytics 10 Conclusion 11 Exercises 11 2. First Steps in Excel Power Query 13 What Is Power Query? 13 Power Query as Excel Myth Buster 13 “Excel Is Not Reproducible” 13 “Excel Does Not Have a True null” 14 “Excel Can’t Process More Than 1,048,576 Rows” 15 Power Query as Excel’s ETL Tool 15 Extract 15 Transform 17 Load 18 A Tour of the Power Query Editor 18 The Ribbon Menu 19 Queries 21 The Imported Data 22 Exiting the Power Query Editor 24 Returning to the Power Query Editor 26 Data Profiling in Power Query 26 What Is Data Profiling? 27 Exploring the Data Preview Options 27 Overriding the Thousand-Row Limit 31 Closing Out of Data Profiling 31 Conclusion 32 Exercises 32 3. Transforming Rows in Power Query 33 Removing the Missing Values 34 Refreshing the Query 37 Splitting Data into Rows 39 Filling in Headers and Cell Values 42 Replacing Column Headers 42 Filling Down Blank Rows 43 Conclusion 44 Exercises 44 4. Transforming Columns in Power Query 45 Changing Column Case 45 Delimiting by Column 47 Changing Data Types 47 Deleting Columns 48 Working with Dates 48 Creating Custom Columns 49 Loading & Inspecting the Data 51 Calculated Columns Versus Measures 52 Reshaping Data 53 Conclusion 54 Exercises 55 5. Merging and Appending Data in Power Query 57 Appending Multiple Sources 57 Connecting to External Excel Workbooks 58 Appending the Queries 61 Understanding Relational Joins 62 Left Outer Join: Think VLOOKUP() 64 Inner Join: Only the Matches 68 Managing Your Queries 70 Grouping Your Queries 70 Viewing Query Dependencies 71 Conclusion 72 Exercises 73 Part II. Data Modeling and Analysis with Power Pivot 6. First Steps in Power Pivot 77 What Is Power Pivot? 77 Why Power Pivot? 77 Power Pivot and the Data Model 80 Loading the Power Pivot Add-in 81 A Brief Tour of the Power Pivot Add-In 83 Data Model 83 Calculations 83 Tables 84 Relationships 84 Settings 84 Conclusion 84 Exercises 85 7. Creating Relational Models in Power Pivot 87 Connecting Data to Power Pivot 87 Creating Relationships 88 Identifying Fact and Dimension Tables 92 Arranging the Diagram View 93 Editing the Relationships 94 Loading the Results to Excel 95 Understanding Cardinality 99 One-to-One Cardinality 100 One-to-Many Relationships 101 Many-to-Many Relationships 101 Why Does Cardinality Matter? 102 Understanding Filter Direction 103 Filtering orders with users 104 Filtering users with orders 105 Filter Direction and Cardinality 106 From Design to Practice in Power Pivot 106 Creating Columns in Power Pivot 106 Calculating in Power Query Versus Power Pivot 106 Example: Calculating Profit Margin 107 Recoding Column Values with SWITCH() 109 Creating and Managing Hierarchies 111 Creating a Hierarchy in Power Pivot 111 Using Hierarchies in the PivotTable 112 Loading the Data Model to Power BI 113 Power BI as the Third Piece of “Modern Excel” 113 Importing the Data Model to Power BI 114 Viewing the Data in Power BI 116 Conclusion 118 Exercises 118 8. Creating Measures and KPIs in Power Pivot 119 Creating DAX Measures 119 Creating Implicit Measures 119 Creating Explicit Measures 122 Creating KPIs 128 Adjusting Icon Styles 130 Adding the KPI to the PivotTable 131 Conclusion 132 Exercises 132 9. Intermediate DAX for Power Pivot 133 CALCULATE() and the Importance of Filter Context 134 CALCULATE() with One Criterion 135 CALCULATE() with Multiple Criteria 136 AND Conditions 136 OR Conditions 137 CALCULATE() with ALL() 138 Time Intelligence Functions 140 Adding a Calendar Table 140 Creating Basic Time Intelligence Measures 143 Conclusion 149 Exercises 149 Part III. The Excel Data Analytics Toolkit 10. Introducing Dynamic Array Functions 153 Dynamic Array Functions Explained 153 What Is an Array in Excel? 154 Array References 154 Array Formulas 156 An Overview of Dynamic Array Functions 158 Finding Distinct and Unique Values with UNIQUE() 158 Finding Unique Versus Distinct Values 159 Using the Spill Operator 160 Filtering Records with FILTER() 160 Adding a Header Column 162 Filtering by Multiple Criteria 162 Sorting Records with SORTBY() 163 Sorting by Multiple Criteria 164 Sorting by Another Column Without Printing It 164 Creating Modern Lookups with XLOOKUP() 165 XLOOKUP() Versus VLOOKUP() 165 A Basic XLOOKUP() 166 XLOOKUP() and Error Handling 167 XLOOKUP() and Looking Up to the Left 168 Other Dynamic Array Functions 168 Dynamic Arrays and Modern Excel 169 Conclusion 169 Exercises 170 11. Augmented Analytics and the Future of Excel 171 The Growing Complexity of Data and Analytics 171 Excel and the Legacy of Self-Service BI 172 Excel for Augmented Analytics 173 Using Analyze Data for AI Powered Insights 173 Building Statistical Models with XLMiner 179 Reading Data from an Image 181 Sentiment Analysis with Azure Machine Learning 184 Conclusion 188 Exercises 188 12. Python with Excel 189 Reader Prerequisites 190 The Role of Python in Modern Excel 190 A Growing Stack Requires Glue 190 Network Effects Mean Faster Development Time 191 Bring Modern Development to Excel 192 Using Python and Excel Together with pandas and openpyxl 193 Other Python Packages for Excel 194 Demonstration of Excel Automation with pandas and openpyxl 195 Cleaning Up the Data in pandas 196 Summarizing Findings with openpyxl 200 Adding a Styled Data Source 204 Conclusion 206 Exercises 207 13. Conclusion and Next Steps 209 Exploring Excel’s Other Features 209 LET() and LAMBDA() 210 Power Automate, Office Scripts, and Excel Online 210 Continued Exploration of Power Query and Power Pivot 211 Power Query and M 211 Power Pivot and DAX 212 Power BI for Dashboards and Reports 213 Azure and Cloud Computing 213 Python Programming 214 Large Language Models and Prompt Engineering 214 Parting Words 215 Index 217
Mount George / Маунт Джордж - Modern Data Analytics in Excel / Современная аналитика данных в Excel [2024, PDF/EPUB, ENG] download torrent for free and without registration
You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum You cannot attach files in this forum You can download files in this forum