Fundamentals of Database Systems / Основы систем баз данных Год издания: 2024 Автор: Salter Kaitlyn Издательство: Toronto Academic Press ISBN: 978-1-77956-170-1 Язык: Английский Формат: PDF Качество: Издательский макет или текст (eBook) Интерактивное оглавление: Да Количество страниц: 274 Описание: This book covers various aspects of database systems such as data modeling, relational databases, SQL programming, database design, and database administration. It is an essential resource for students and professionals in computer science and information technology who are interested in developing their knowledge of database systems. The book is designed to provide a clear and concise overview of the fundamentals of database systems, making it an excellent starting point for anyone looking to enter the field. В этой книге рассматриваются различные аспекты систем баз данных, такие как моделирование данных, реляционные базы данных, программирование на SQL, проектирование баз данных и администрирование баз данных. Это незаменимый ресурс для студентов и специалистов в области компьютерных наук и информационных технологий, которые заинтересованы в расширении своих знаний о системах баз данных. Книга предназначена для того, чтобы дать четкий и сжатый обзор основ систем баз данных, что делает ее отличной отправной точкой для всех, кто хочет начать работать в этой области.
Примеры страниц (скриншоты)
Оглавление
Preface xvii List of Figures xi List of Tables xiii List of Abbreviations xv 1.5.3. Indexing 16 1.5.4. Query Optimization 16 1.5.5. Query Execution 16 1.6. Characteristics of Database Systems 17 1.6.1. Data Independence 17 1.6.2. Concurrent Access 17 1.6.3. Data Integrity 17 1.6.4. Security 18 1.6.5. Scalability 18 1.7. Architecture of Database Systems 19 1.7.1. Client-Server Architecture 19 1.7.2. Tiered Architecture 19 1.7.3. Distributed Architecture 19 1.8. Query Processing and Optimization 20 1.8.1. Query Processing Phases 20 1.8.2. Query Optimization Techniques 21 1.8.3. Query Execution Plans 21 1.9. Importance of Database Systems in Modern World 21 1.9.1. Data Management 22 1.9.2. Decision Making 22 1.9.3. Improved Efficiency 22 1.9.4. Cost Savings 22 1.9.5. Data Security 22 1.9.6. Compliance 22 1.9.7. Innovation 23 1.10. Summary 24 Review Questions 24 Multiple Choice Questions 24 References 26 Database Development Process 31 Unit Introduction 31 2.1. Development Life Cycle – Waterfall 33 2.2. Database Life Cycle 34 2.3. Requirements Gathering 35 2.4. Analysis 36 2.5. Logical Design 37 2.6. Implementation 40 2.7. Realizing the Design 41 2.8. Populating the Database 41 2.9. Guiding Principles for the Development of an ER Diagram 42 2.10. Summary 44 Review Questions 44 Multiple Choice Questions 44 References 45 Types of Databases 49 Unit Introduction 49 3.1. Hierarchical Databases 52 3.1.1. History of Hierarchical Databases 52 3.1.2. Importance of Hierarchical Databases 53 3.1.3. Applications of Hierarchical Databases 54 3.1.4. Advantages of Hierarchical Databases 55 3.1.5. Disadvantages of Hierarchical Databases 57 3.2. Network Databases 58 3.2.1. History of Network Databases 60 3.2.2. Importance of Network Databases 61 3.2.3. Applications of Network Databases 62 3.2.4. Advantages of Network Databases 63 3.2.5. Disadvantages of Network Databases 65 3.3. Relational Databases 66 3.3.1. History of Relational Databases 67 3.3.2. Importance of Relational Databases 68 3.3.3. Applications of Relational Databases 69 3.3.4. Advantages of Relational Database 71 3.3.5. Disadvantages of Relational Database 72 3.4. Object-Oriented Databases (OODBs) 73 3.4.1. History of Object-Oriented Databases (OODBs) 74 3.4.2. Importance of Object-Oriented Databases (OODBs) 75 3.4.3. Applications of Object-Oriented Databases (OODBs) 76 3.4.4. Advantages of Object-Oriented Databases (OODBs) 78 3.4.5. Disadvantages of Object-Oriented Databases (OODBs) 79 3.5. Graph Databases 80 3.5.1. History of Graph Databases 81 3.5.2. Importance of Graph Databases 82 3.5.3. Applications of Graph Databases 83 3.5.4. Advantages of Graph Databases 85 3.5.5. Disadvantages of Graph Databases 86 3.6. NoSQL Databases 87 3.6.1. History of NoSQL Databases 89 3.6.2. Importance of NoSQL Databases 89 3.6.3. Applications of NoSQL Databases 91 3.6.4. Advantages of NoSQL Databases 92 3.6.5. Disadvantages of NoSQL Databases 93 3.7. Document Databases 94 3.7.1. History Document Databases 95 3.7.2. Importance Document Databases 96 3.7.3. Applications of Document Databases 97 3.7.4. Advantages of Document Databases 98 3.7.5. Disadvantages of Document Databases 100 3.8. Summary 102 Review Questions 102 Multiple Choice Questions 102 References 105 Database Modeling 115 Unit Introduction 115 4.1. Overview of Data Modeling 118 4.1.1. Methodology 118 4.1.2. Data Modeling in the Setting of Database Design 119 4.1.3. Constituents of a Data Model 120 4.1.4. Significance of Data Modeling 120 4.2. The Entity-Relationship (ER) Model 120 4.2.1. Basic Concepts of E-R Modeling 121 4.2.2. Entities 121 4.2.3. Special Entity Types 121 4.3. Database Design is a Part of Data Modelling 122 4.3.1. Requirements Analysis 123 4.3.2. Phases in Building the Data Model 124 4.4. Classifying Data Objectsand Relationships 125 4.4.1. Entities 126 4.4.2. Attributes 127 4.4.3. Validating Attributes 128 4.5. Derived Attributes and Code Values 128 4.5.1. Relationships 129 4.5.2. Naming Data Objects 130 4.5.3. Object Definition 131 4.5.4. Recording Information’s in Designing Document 132 4.5.5. Recording Information in Designing Document 133 4.6. Developing the Basic Schema 134 4.6.1. Binary Relationships 134 4.6.2. One-To-One 135 4.6.3. One-To-Many 136 4.6.4. Many-To-Many 136 4.6.5. Recursive Relations 136 4.7. Refining – The Entity-Relationships (ERs) Diagrams 137 4.7.1. Entities Participation in Relationships 137 4.7.2. Resolve Many-To-Many Relationships 137 4.7.3. Transform Complex Relations into Binary Relationships 138 4.7.4. Eliminate, Redundant, and Relationships 139 4.8. Primary and Foreign Keys 139 4.8.1. Primary Key Attributes 140 4.8.2. Composite Keys 141 4.8.3. Artificial Keys 141 4.8.4. Primary Key Migration 141 4.8.5. Define Key Attributes 142 4.8.6. Validate Keys and Relationships 142 4.8.7. Foreign Keys 142 4.8.8. Categorizing Foreign Keys 143 4.8.9. Foreign Key Ownership 143 4.8.10. Diagramming Foreign Keys 143 4.9. Adding Qualities to the Model 143 4.9.1. Relation of Attributes to Entities 143 4.9.2. Parent-Child Relationships 144 4.9.3. Multivalued Attributes 144 4.9.4. Relations Described by Attributes 145 4.9.5. Code Values and Derived Attributes 145 4.9.6. Attributes in the ER Diagram 146 4.10. Generalization Hierarchies 146 4.10.1. Description 147 4.10.2. Making a Generalization Hierarchy 147 4.10.3. Types of Hierarchies 147 4.10.4. Rules 148 4.11. Adding Data Integrity Rules 148 4.11.1. Entity Integrity 148 4.11.2. Referential Integrity 148 4.11.3. Inserting and Deleting Rules 148 4.11.4. Insert Rules 149 4.11.5. Delete Rules 149 4.11.6. Insert and Delete Guidelines 150 4.11.7. Domains 150 4.11.8. Primary Key Domains 151 4.11.9. Foreign Key Domains 151 4.12. Outline of the Relational Model 151 4.13. Summary 153 Review Questions 153 Multiple Choice Question 153 References 155 Relational Database and SQL 163 Unit Introduction 163 5.1. Relational Database Concepts 165 5.2. Hierarchical Databases 165 5.3. Network Databases 166 5.4. Components of Relational Database 167 5.4.1. Table 167 5.4.2. Record/Row 168 5.4.3. Field/Column 168 5.4.4. Datatype 168 5.4.5. Query/View 170 5.4.6. Stored Procedure 171 5.5. Overview of SQL 171 5.5.1. Working of SQL 172 5.5.2. History of SQL 172 5.5.3. Standard of SQL 173 5.5.4. Importance of SQL Today and Tomorrow 174 5.6. The Practice Of SQL Commands 175 5.6.1. Microsoft Access 175 5.6.2. SQL Server 176 5.6.3. MySQL 177 5.6.4. Oracle 178 5.7. Summary 179 Review Questions 179 Multiple Choice Questions 179 References 180 Role of Big Data in Database Systems 185 Unit Introduction 185 6.1. Understanding Big Data 187 6.1.1. Characteristics of Big Data 187 6.1.2. Importance of Big Data 188 6.2. Big Data Technologies 189 6.2.1. Hadoop 190 6.2.2. Spark 191 6.2.3. NoSQL Databases 191 6.2.4. Comparison of the Technologies 192 6.3. Type of Data: Transactional or Analytical 193 6.3.1. Transactional Systems 193 6.3.2. Analytical Systems 193 6.3.3. CAP Theorem 194 6.3.4. ACID vs. BASE 195 6.4. Requirements and Challenges of Big Data 195 6.4.1. Scalability 195 6.4.2. Availability and Fault Tolerance 195 6.4.3. Efficient Network Setup 195 6.4.4. Flexibility 196 6.4.5. Privacy and Access Control 196 6.4.6. Elasticity 196 6.4.7. Batch Processing and Interactive Processing 196 6.4.8. Efficient Storage 196 6.4.9. Multi-Tenancy 196 6.4.10. Efficient Processing 197 6.4.11. Efficient Scheduling 197 6.5. Summary 198 Review Questions 198 Multiple Choice Questions 198 References 199 Data Warehousing and Business Intelligence 203 Unit Introduction 203 7.1. Data Warehouse (DW) Concepts 205 7.2. Statements Business Intelligence (BI) 206 7.3. Business Intelligence (BI) Architecture 208 7.3.1. Operational Applications vs. Business Intelligence (BI) Applications 208 7.3.2. Requirement for Data Warehouse (DW) 209 7.3.3. Improved Decision-Making via Analysis and Reporting 210 7.4. Data Warehouse (DW) Data Model 212 7.4.1. DW Modeling Techniques 213 7.4.2. DW Database Design Modeling 213 7.4.3. Developing Data Warehouse (DW) 214 7.5. Business Intelligence (BI) Concepts 215 7.5.1. Customer and Market Analysis 216 7.5.2. Channel Analysis 216 7.5.3. Forecasting and Planning 216 7.6. Data Warehousing Online Transactional Processing (OLTP) 217 7.7. Data Warehouse (DW) and Business Intelligence (BI) High-Level Architecture 217 7.8. Summary 219 Review Questions 219 Multiple Choice Questions 219 References 220 Applications of Database Systems 225 Unit Introduction 225 8.1. E-Commerce 227 8.1.1. Importance of Database in E-Commerce 227 8.1.2. Examples of E-Commerce Databases 228 8.2. Healthcare 229 8.2.1. Role of Databases in Healthcare 229 8.2.2. Examples of Healthcare Databases 230 8.3. Banking and Finance 231 8.3.1. Importance of Databases in Financial Management 231 8.3.2. Examples of Financial Databases 232 8.4. Social Media 233 8.4.1. Role of Databases in Social Media Platforms 233 8.4.2. Examples of Social Media Databases 234 8.5. Education 235 8.5.1. Importance of Databases in Education 235 8.5.2. Examples of Educational Databases 236 8.6. Logistics and Supply Chain Management 237 8.6.1. Role of Databases in Logistics and Supply Chain Management 237 8.6.2. Examples of Logistics and Supply Chain Databases 238 8.7. Internet of Things (IoT) 239 8.7.1. Role of Databases in IoT Data 239 8.7.2. Examples of IoT Databases 240 8.8. Summary 242 Review Questions 242 Multiple Choice Questions 242 References 243 INDEX 247
You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum You cannot attach files in this forum You can download files in this forum