Register · · Password forgotten? · |
Stirrup Jennifer, Weinandy Thomas / Стиррап Дженнифер, Вейнанди Томас - Artificial Intelligence
|
![]() |
Home » Books and magazines » Computer literature » Programs from Microsoft |
DL-List and Torrent activity | |
Size: 72 MB | Registered: 8 months 24 days | Completed: 1 time | |
Seeder not seen: 5 months 3 days |
|
|
Author | Message | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Download Windows ® Gender: Longevity: 9 years Posts: 6887 |
Artificial Intelligence with Microsoft Power BI: Simpler AI for the Enterprise / Искусственный интеллект с помощью Microsoft Power BI: Более простой искусственный интеллект для предприятия
Год издания: 2024 Автор: Stirrup Jennifer, Weinandy Thomas / Стиррап Дженнифер, Вейнанди Томас Издательство: O’Reilly Media, Inc. ISBN: 978-1-098-11275-2 Язык: Английский Формат: PDF/EPUB Качество: Издательский макет или текст (eBook) Интерактивное оглавление: Да Количество страниц: 473 Описание: Advance your Power BI skills by adding AI to your repertoire at a practice level. With this practical book, business-oriented software engineers and developers will learn the terminologies, practices, and strategy necessary to successfully incorporate AI into your business intelligence estate. Jen Stirrup, CEO of AI and BI leadership consultancy Data Relish, and Thomas Weinandy, research economist at Upside, show you how to use data already available to your organization. Springboarding from the skills that you already possess, this book adds AI to your organization's technical capability and expertise with Microsoft Power BI. By using your conceptual knowledge of BI, you'll learn how to choose the right model for your AI work and identify its value and validity. Use Power BI to build a good data model for AI Demystify the AI terminology that you need to know Identify AI project roles, responsibilities, and teams for AI Use AI models, including supervised machine learning techniques Develop and train models in Azure ML for consumption in Power BI Improve your business AI maturity level with Power BI Use the AI feedback loop to help you get started with the next project Совершенствуйте свои навыки в Power BI, применяя искусственный интеллект на практике. Благодаря этой практической книге инженеры и разработчики программного обеспечения, ориентированные на бизнес, изучат терминологию, методы и стратегию, необходимые для успешного внедрения искусственного интеллекта в бизнес-аналитику. Джен Стрейррап, генеральный директор консалтинговой компании Data Relish, специализирующейся на лидерстве в области искусственного интеллекта и BI, и Томас Вайнанди, экономист-исследователь Upside, расскажут вам, как использовать данные, уже имеющиеся в вашей организации. Опираясь на навыки, которыми вы уже обладаете, эта книга расширит технические возможности и опыт вашей организации в области искусственного интеллекта с помощью Microsoft Power BI. Используя свои концептуальные знания в области BI, вы узнаете, как выбрать правильную модель для своей работы с ИИ и определить ее ценность и обоснованность. Используйте Power BI для создания хорошей модели данных для ИИ Проясните терминологию ИИ, которую вам необходимо знать Определите роли, обязанности и команды в проектах ИИ для ИИ Используйте модели ИИ, включая методы машинного обучения с контролем Разрабатывайте и обучайте модели в Azure ML для использования в Power BI Повысьте уровень развития искусственного интеллекта в своем бизнесе с помощью Power BI Используйте цикл обратной связи с ИИ, который поможет вам приступить к следующему проекту ОглавлениеPreface ix1. Getting Started with AI in the Enterprise: Your Data 1 Overview of Power BI Data Ingestion Methods 2 Workflows in Power BI That Use AI 3 How Are Dataflows Created? 3 Things to Note Before Creating Workflows 16 Streaming Dataflows and Automatic Aggregations 16 Getting Your Data Ready First 16 Getting Data Ready for Dataflows 16 Where Should the Data Be Cleaned and Prepared? 17 Real-Time Data Ingestion Versus Batch Processing 19 Real-Time Datasets in Power BI 19 Batch Processing Data Using Power BI 22 Importing Batch Data with Power Query in Dataflows 23 The Dataflow Calculation Engine 24 Dataflow Options 24 DirectQuery in Power BI 25 Import Versus Direct Query: Practical Recommendations 25 Premium, Pro, and Free Power BI 26 Summary 27 2. A Great Foundation: AI and Data Modeling 29 What Is a Data Model? 30 What Is a Fact Table? 30 Why Is Data Modeling Important? 31 Why Are Data Models Important in Power BI? 33 Why Do We Need a Data Model for AI? 34 Advice for Setting Up a Data Model for AI 35 Analytics Center of Excellence 35 Earning Trust Through Data Transactions 36 Agile Data Warehousing: The BEAM Framework 36 Data Modeling Disciplines to Support AI 38 Data Modeling Versus AI Models 41 Data Modeling in Power BI 41 What Do Relationships Mean for AI? 45 Flat File Structure Versus Dimensional Model Structure in Power BI 50 Summary 73 3. Blueprint for AI in the Enterprise 75 What Is a Data Strategy? 76 Artificial Intelligence in Power BI Data Visualization 78 Insights Using AI 85 Automated Machine Learning (AutoML) in Power BI 87 Cognitive Services 88 Data Modeling 88 Real-World Problem Solving with Data 89 Binary Prediction 90 Classification 93 Regression 95 Practical Demonstration of Binary Prediction to Predict Income Levels 99 Gather the Data 100 Create a Workspace 100 Create a Dataflow 100 Model Evaluation Reports in Power BI 111 Summary 115 4. Automating Data Exploration and Editing 117 The Transformational Power of Automation 117 Surviving (and Thriving with) Automation 119 AI Automation in Power BI 120 AI in Power Query 122 Get Data from Web by Example 122 Demo 4-1: Get Data from Web by Example 123 Add Column from Examples 131 Demo 4-2: Add Column from Examples 132 Data Profiling 134 Demo 4-3: Data Profiling 135 Table Generation 137 Demo 4-4: Table Generation 138 Fuzzy Matching 142 Demo 4-5: Fuzzy Matching 143 Intelligent Data Exploration 149 Quick Insights 150 Demo 4-6: Quick Insights 151 Report Creation 156 Demo 4-7: Report Creation 156 Smart Narrative 160 Summary 164 5. Working with Time Series Data 165 More Than Just Timestamps 165 The Components of a Time Series 168 Changes to a Time Series 169 How Trend Lines Work in Power BI 171 Limitations of Trend Lines 172 Demo 5-1: Exploring Taxi Trip Data 172 Forecasting 182 Forecasting for Business 183 How Forecasting Works 183 Limitations of Forecasting 184 Demo 5-2: Forecasting Taxi Trip Data 184 Anomaly Detection 187 Anomaly Detection for Business 188 How Anomaly Detection Works 188 Limitations of Anomaly Detection 189 Demo 5-3: Anomaly Detection with Taxi Trip Data 190 Summary 193 6. Cluster Analysis and Segmentation 195 Cluster Analysis for Business 195 Segmentation Meets Data Science 196 Preprocessing Data for Cluster Analysis 198 How Cluster Analysis Works in Power BI 200 Limitations of Cluster Analysis 201 Demo 6-1: Cluster Analysis with AirBnB Data 201 Summary 211 7. Diving Deeper: Using Azure AI Services 213 Supporting Data-Driven Decisions with a Data Dictionary 214 What Is Azure AI Services? 215 Accessing Azure AI Services in Power BI 216 Creating an Azure AI Services Resource 216 Creating a Power BI Report 220 OpenAI ChatGPT and Power BI 220 What Is the Purpose of the Exercise? 220 Exercise Prerequisites 221 Azure OpenAI and Power BI Example 221 Generating a Secret Key and Code from the OpenAI Website 224 Creating a Streaming Power BI Dataset 229 Dashboard Didn’t Work? 258 Summary 259 8. Text Analytics 261 Custom Models Versus Pretrained Models 262 Text as Data 263 Limitations of Text Analytics 264 Demo 8-1: Ingest AirBnB Data 265 Language Detection 270 How It Works 270 Performance and Limitations 270 Demo 8-2: Language Detection 271 Key Phrase Extraction 276 How It Works 277 Performance and Limitations 278 Demo 8-3: Key Phrase Extraction 278 Sentiment Analysis 282 How It Works 283 Recommendations and Limitations 283 Demo 8-4: Sentiment Analysis 284 Demo 8-5: Exploring a Report with Text Analytics 290 Summary 292 9. Image Tagging 293 Images as Data 293 Deep Learning 295 A Simple Neural Network 296 Image Tagging for Business 299 How It Works 300 Limitations of Vision 302 Demo 9-1: Ingest AirBnB Data 303 Demo 9-2: Image Tagging 308 Demo 9-3: Exploring a Report with Vision 314 Summary 319 10. Custom Machine Learning Models 321 AI Business Strategy 321 Organizational Learning with AI 322 Successful Organizational Behaviors 324 Custom Machine Learning 324 Machine Learning Versus Typical Programming 325 Narrow AI Versus General AI 326 Azure Machine Learning 328 Azure Subscription and Free Trial 330 Azure Machine Learning Studio 330 Demo 10-1: Forecasting Vending Machine Sales 337 Summary 359 11. Data Science Languages: Python and R in Power BI 361 Python Versus R 363 Limitations 365 Setup 365 Setting Up Python 366 Setting Up R 372 Ingestion 374 Ingesting Data with Python 375 Ingesting Data with R 378 Transformation 380 Transforming Data with Python 381 Transforming Data with R 384 Visualization 386 Visualizing Data with Python 386 Visualizing Data with R 390 Machine Learning 393 Using a Pretrained Model with Python on Transform 394 Training a Model with R on Ingest 398 Summary 401 12. Making Your AI Production-Ready with Power BI 403 Strategies to Help Evaluate Models 404 Scenario Without Heteroscedasticity 404 Scenario with Heteroscedasticity 404 How Does Heteroscedasticity Affect AI Models? 405 What Can Be Done If Heteroscedasticity Is Suspected? 405 Making Your AI Model Ready for the Real World 406 Assessing the Costs and Benefits to the Business 407 Example ROI Calculation 409 Can the Business Teams Have Confidence in the AI Model? 411 Is the Model Result Just a Fluke? 411 Assuring Ongoing Model Performance 412 Making Your AI Production-Ready in Power BI 413 Data Lineage for the AI Model 420 Using the Scored Output from the Model in a Power BI Report 420 Summary 420 13. The AI Feedback Loop 423 How Do You Start the Next Project? 423 How Does Feedback Affect the Training and Development of AI Models? 424 AI and Edge Cases in Feedback 424 How Can Feedback Help Fix Errors in an AI Model? 426 AI, Bias, and Fairness 426 Explainable AI and Feedback 428 How Can Members of Organizations Address Ethics and AI? 428 Transfer Learning in Model Training 431 How Are Other Organizations Using the AI Feedback Loop? 432 How Can the AI Feedback Loop Help You? 433 AI and Power BI—Over to You! 434 Index 437
|
|||||||||||||||||||||
![]() |
Home » Books and magazines » Computer literature » Programs from Microsoft |
Current time is: 24-Feb 14:42
All times are UTC + 2
You cannot post new topics in this forum
You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum You cannot attach files in this forum You can download files in this forum |